C-totally real warped product submanifolds
نویسنده
چکیده
We obtain a basic inequality involving the Laplacian of the warping function and the squared mean curvature of any warped product isometrically immersed in a Riemannian manifold (cf. Theorem 2.2). Applying this general theory, we obtain basic inequalities involving the Laplacian of the warping function and the squared mean curvature of C-totally real warped product submanifolds of (κ, μ)-space forms, Sasakian space forms and non-Sasakian (κ, μ)-manifolds. Then we obtain obstructions to the existence of minimal isometric immersions of C-totally real warped product submanifolds in (κ, μ)-space forms, non-Sasakian (κ, μ)-manifolds and Sasakian space forms. In the last, we obtain an example of a warped product C-totally real submanifold of a non-Sasakian (κ, μ)-manifold, which satisfies the equality case of the basic inequality. AMS Subject Classification: 53C40, 53C25.
منابع مشابه
Warped Product Semi-Invariant Submanifolds in Almost Paracontact Riemannian Manifolds
We show that there exist no proper warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds such that totally geodesic submanifold and totally umbilical submanifold of the warped product are invariant and anti-invariant, respectively. Therefore, we consider warped product semi-invariant submanifolds in the form N N⊥×fNT by reversing two factor manifolds NT and N⊥. W...
متن کاملContact CR-Warped product submanifolds in Kenmotsu space forms
Abstract: In the present paper, we give a necessary and sufficient condition for contact CR-warped product to be contact CR-product in Kenmotsu space forms.
متن کاملApplication of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold
In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1, f_2, f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition. Finally, we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...
متن کاملDoubly Warped Product Cr-submanifolds in a Locally Conformal Kaehler Space Form
Recently, the present authors considered doubly warped product CR-submanifolds in a locally conformal Kaehler manifold and got some inequalities about the length of the second fundamental form ([14]). In this report, we obtain an inequality of the mean curvature of a doubly warped product CR-submanifold in a locally conformal Kaehler space form. Then, we consider the equality case of this inequ...
متن کاملWarped Product Submanifolds in Generalized Complex Space Forms
B.Y. Chen [5] established a sharp inequality for the warping function of a warped product submanifold in a Riemannian space form in terms of the squared mean curvature. Later, in [4], he studied warped product submanifolds in complex hyperbolic spaces. In the present paper, we establish an inequality between the warping function f (intrinsic structure) and the squared mean curvature ‖H‖2 and th...
متن کامل